Numeracy in P4
Have a look at some of the strategies we are using in P4 to help us to quickly find the answer to addition and subtraction sums.

1. Using numberlines to add a 2 digit number and a single digit Examples:
a, $53+9$
$+7+2$

53
$60=62$
Process: Use knowledge of number bonds to ten to complete this sum. Add on the number to get to the next ten $(53+7)$ and then add on the remaining amount, in this sum we had to add on 9 altogether so after adding the 7 to get to the next ten we were left with having to add on 2 more.
b, $49+5$
$+1 \quad+4$
$49 \quad 50=54$
Same process as above- adding on to get to the next multiple of ten and then adding the remaining amount.
c, $67+6$

$$
+3+3
$$

\square
2. Using numberlines to add 2 double digit numbers together Examples:
a, $54+18$
$+10+4+4$
$\begin{array}{ccc}54 & 64 & 68\end{array}=72$

Process: Add on the ten and then add the units. In this case we split the units digit (8) into 4 and 4 to make it more manageable to add.
b, $49+25$
$+20+5$

Same process as above-adding the tens first and then the units.
c, $38+22$

$$
+20+2
$$

$38 \quad 58=60$
3. Using numberlines to subtract a single digit from a double digit. Examples:
a, $27-8=$
$-7 \quad-1$
$27 \quad 20=19$
Process: This sum asks us to subtract a total of 8 . First we subtract 7 to bring us back to the previous multiple of ten (27-7=20) and then we subtract 1 more.
b, 35-7 =

Try some of these strategies at home with your child.
By breaking the sums up and using the numberline as a visual tool the children find the sums less daunting.

1. Using ENLs to Partition Numbers, Bridging 10s etc.

Example 1:

Tip: Show me 7 on ENL

How many more to next 10? (Answer 3)

But the problem asked you 7+5. How many more have you still to add? (Answer 2)

So $7+5=12$

Example 2:

Same as 8 (a): Split the 5 into $3+2$.
Try with different examples
2. Using ENLs with number problems where numbers can be rounded up/adjusted

Example:

$34+19$

93-18

3. Using ENLs with subtraction problems where the numbers are close together

Example 1:

101 parents attended the school concert, 98 of them were women. How many men attended?

Example 2:

The bill in the shop came to $£ 19.93$. How much change from $£ 20$?

Partitioning Strategy

3 Key Questions

a) How many dots do you see altogether?
b) How many black dots?
c) How many grey dots?

Examples:

3

Altogether (A)
$\begin{array}{cc}\text { Black (B) } & \text { Grey (G) } \\ 2 & 1\end{array}$

Record when / if appropriate

4

$\begin{array}{lll}\text { (A) } & \text { (B) } & (G) \\ 4 & 2 & 2\end{array}$

5

(A) \quad (B) $\quad(G)$

51
4

$6 \quad$| \bullet | \bullet | \bullet | |
| :--- | :--- | :--- | :--- |
| | | | |

y^{6}
(A) (B) $\quad(G)$
$4 \quad 2$
$6 \quad 4$
2

(A) (B) \quad (G)
2
$5 \quad 7 \quad 2$
5
8

(A) (B) $\quad(G)$
$8 \quad 7 \quad 1$
9

${ }_{6}^{9}$
(A) (B)
(G)
10

(A) (B) \quad (G)
$10 \quad 4 \quad 6$

3 Teaching Points

1. Practise above frames with first (a) displaying then (b) flashing for about 1 second
2. Particular emphasis should be placed through time and practise on 5 and 10 frames
3. Practise different partitions for each number

Higher Level Partitioning

Eg. (1) $7+5=$?

$$
\begin{aligned}
& 7+5=12 \\
& 7+3+2=12
\end{aligned}
$$

Eg. (2) $37+5=$?

$$
\begin{array}{|l|l|l|l|l|}
\hline \bullet & \bullet & \bullet & \bullet & \bullet \\
\hline \bullet & \bullet & \bullet & \bullet & \bullet \\
\hline
\end{array} \quad \begin{array}{|l|ll|ll|}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\hline \bullet & \bullet & \bullet & \bullet & \bullet \\
\hline
\end{array}
$$

$37+5=42$
$37+3+2=42$

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline \bullet & 0 & 0 & 0 & 0 \\
\hline \bullet & 0 & 0 & 0 & 0 \\
\hline
\end{array} \begin{array}{|l|l|l|l|l|}
\hline & 0 & 0 & 0 & 0 \\
\hline & \bullet & 0 & 0 & 0 \\
\hline
\end{array}+\begin{array}{|l|l|l|}
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|}
\hline \bullet & \bullet & \bullet & \bullet & \bullet \\
\hline & \bullet & \bullet & \bullet & \bullet \\
\hline
\end{array} \quad \begin{array}{|l|l|l|l|l|}
\hline \bullet & \bullet & \bullet & \bullet & \bullet \\
\hline & \bullet & \bullet & & \\
\hline
\end{array}
\end{aligned}
$$

Rounding and Adjusting Strategy

Sometimes it is easier to adjust when adding or subtracting numbers. This is often the 'forgotten' strategy

1 Adding 'near 10' to a number

$16+10-1=25$

eg. (2) $29+8=37$
$29+10-2=37$

$$
\text { eg. (3) } 88+7=95959
$$

2 Subtracting a 'near 10' from a number

$$
\text { eg. (1) } \begin{array}{r}
34-9=25 \\
34-10+1=25
\end{array}
$$

eg. (2) $71-7=64$
$71-10+3=64$

eg. (3) $105-8=97$

$$
105-10+2=97
$$

3 Adding 'near' multiples of 10 to a number
eg. (1) $43+29=72$

30

43
7273
eg.(2) $55+37=92$

4 Subtracting 'near' multiples of 10 from a number

eg. (1) $94-19=75$

eg. (2) $87-38=49$

Which Strategy is Best?

When pupils have worked through a variety of mental strategies eg.

- Counting on / back
- Rounding / adjusting
- Combining
- Partitioning etc.,
they can use the most efficient / practical one (or very often the one they feel most comfortable with.

This final example shows a variety of ways to do the same problem mentally.

Problem:

For his break, Charlie buys a banana at 36 p and a bottle of water at 48 p. How much does he owe the shop?

Method 1
$\frac{40}{30}$

Method 2

Method 3

Method 4

Method 5
50

